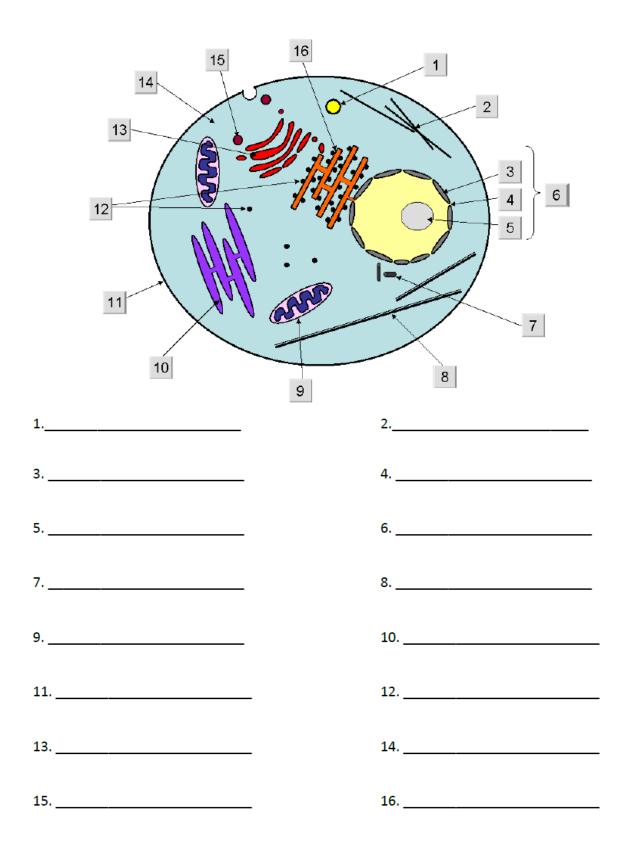
Btec Level 3 Principles and Application of Science

Transition Pack



Structure and function of cells and tissues

B1: Cell structure and function

Animal cell structure and function

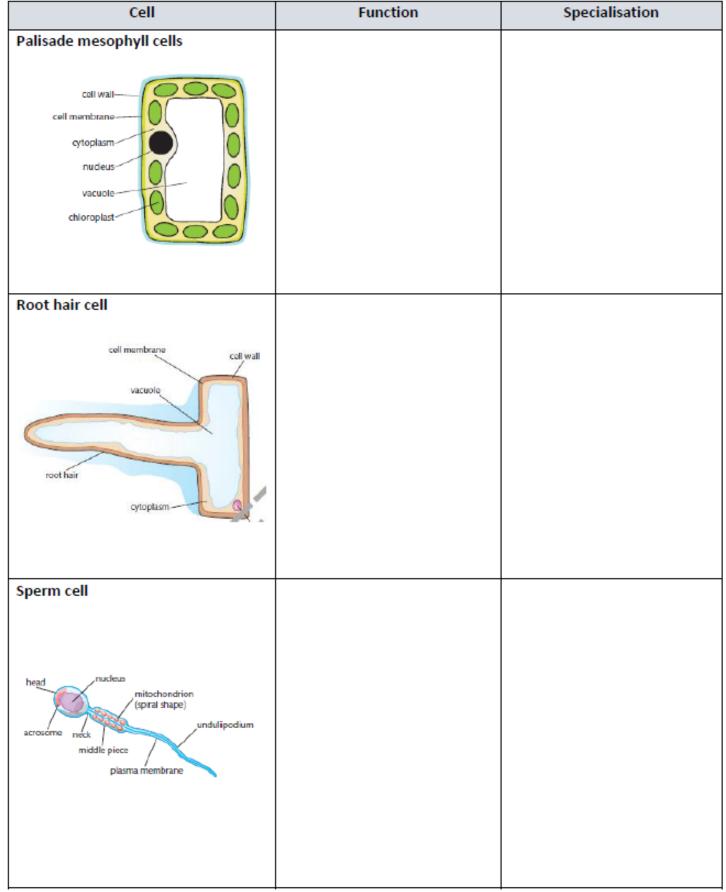
Animal Cell Structure	Function
Plasma membrane	
Cytoplasm	
Nucleus	
Nucleolus	
Rough endoplasmic reticulum (ER)	
Smooth endoplasmic reticulum (ER)	
Golgi apparatus	
Vesicles	
Lysosomes	
Ribosomes	
Mitochondria	
Centrioles	

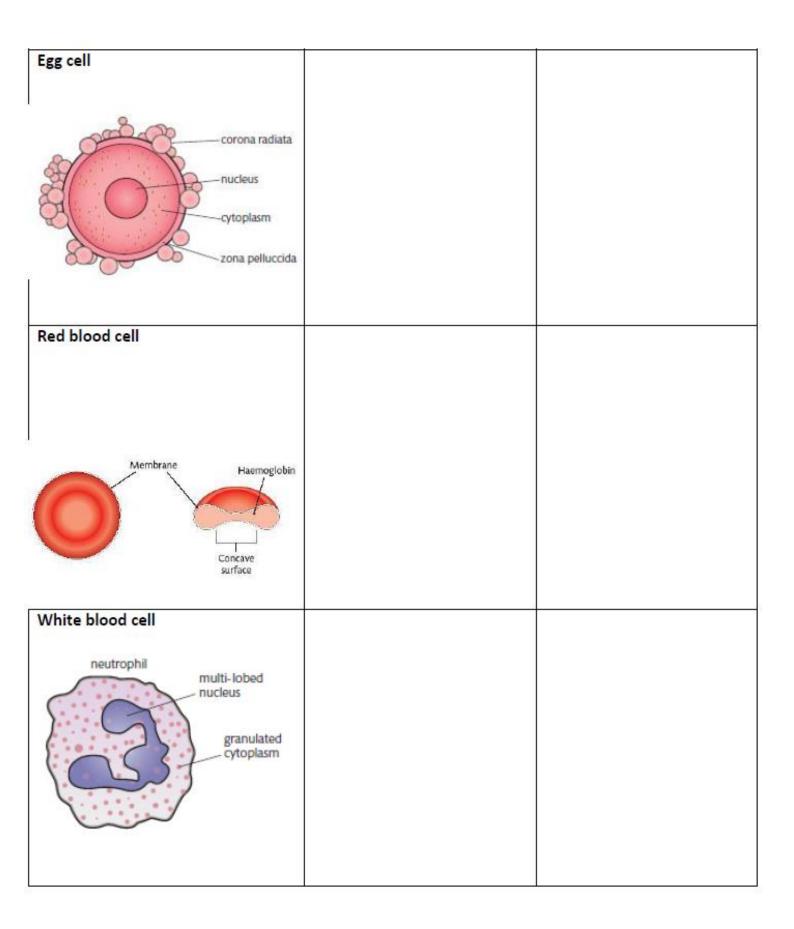
Plant cell structure and function

Draw a diagram of a plan cell and extend the labels to the correct feature.

endoplasmic reticulum

ribosomes —	 — cell membrane — cell wall – Golgi complex
endoplasmic — reticulum	
chromosome - nucleolus - nucleus –	· vacuole
nuclear - membrane	nuclear pore

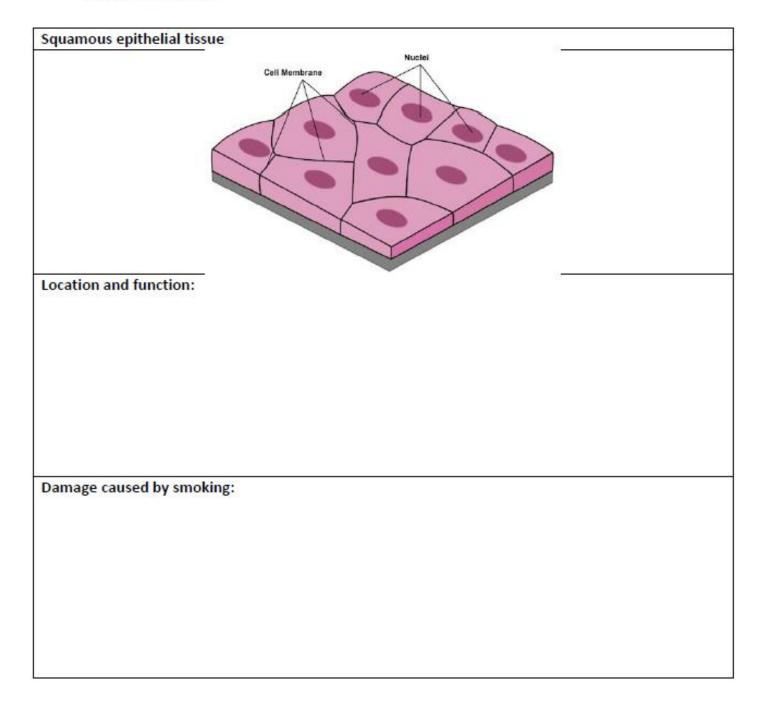

chloroplast -

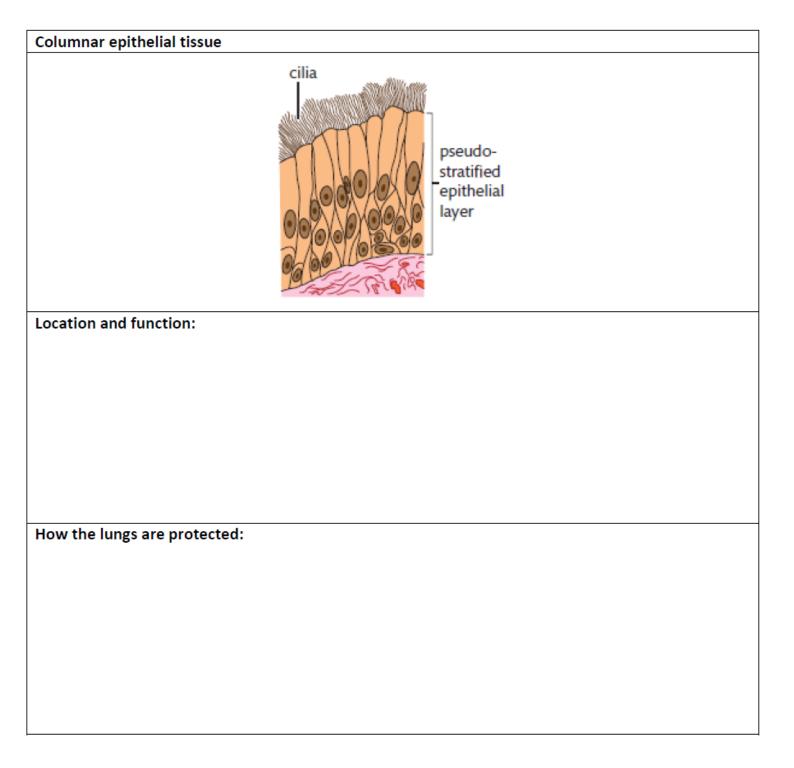

mitochondrion

leucoplast (starch storage)

Plant Cell Structure	Function
Cell wall	
Chloroplast	
Vacuole	
Tonoplast	
Amyloplast	
Plasmodesmata	
Pits	

B2: Cell specialisation

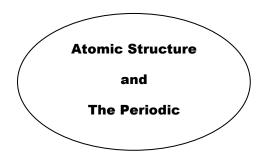

B3: Tissue structure and function


A collection of differentiated cells that perform a specific function is called a tissue. There are four main tissue types in animals:

- 1) epithelium
- 2) muscle
- 3) connective
- nervous

1) Epithelium: Epithelial tissues are found lining organs and surfaces. Epithelial tissues can be divided into different types:

- squamous epithelial tissue
- columnar epithelial tissue
- endothelium tissue


Periodicity and properties of elements

	2	He	Helium 4.003	10	Ne	Neon 20.1797	18	Ar	Argon 39.948	36	Kr	Krypton 83.80	54	Xe	Xenon 131.29	86	Rn	Radon (222)				71	Lu	Lutetium 174.967	103	Lr	Lawrencium (262)
		Ξ	Hel 4.(2					ω			S	×		×					-	2					
				6	Γ ι	Fluorine 18.9984032	17	IJ	Chlorine 35.4527	35	Br	Bromine 79.904	53	Ι	Iodine 126.90447	85	At	Astatine (210)				70	Υb	Ytterbium 173.04	102		Nobelium (259)
				8	0	Oxygen 15.9994	16	S	sulfur 32.066	34	Se	Selenium 78.96	52	Te	Tellurium 127.60	84		Polonium (209)				69	Tm	Thulium 168.93421	101	Ыd	Mendelevium (258)
				7	Z	Nitrogen 14.00674	15	Р	Phosphorus 30.973761	33	\mathbf{As}	Arsenic 74.92160	51	Sb	Antimony 121.760	83	Bi	Bismuth 208.98038				68	Er	Erbium 167.26	100	Fm	Fermium (257)
				9	U	Carbon 12.0107	14		Silicon 28.0855	32	Ge	Germanium 72.61	50	Sn	Tin 118.710	82	Pb	Lead 207.2	114			67	H_0	Holmium 164.93032	66	Es	Einsteinium (252)
nts				5	B	Boron 10.811	13	N	Aluminum 26.981538	31	Ga	Gallium 69.723	49	In	Indium 114.818	81	IT	Thallium 204.3833	113			99	Dy	Dysprosium 162.50	98	Cf	Californium (251)
e Periodic Table of the Elements										30	Zn	Zine 65.39	48	Cd	Cadmium 112.411	80	Hg	Mercury 200.59	112	(277)		65	$\mathbf{T}\mathbf{b}$	Terbium 158.92534	67	Bk	Berkelium (247)
the E										29	Cu	Copper 63.546	47	\mathbf{Ag}	Silver 107.8682	62	Au	Gold 196.96655	111	(272)		64	Gd	Gadolinium 157.25	96	Cm	Curium (247)
le of										28	Ņ	Nickel 58.6934	46	Pd	Palladium 106.42	78	Pt	Platinum 195.078	110	(269)		63	Eu	Europium 151.964	56	Am	Americium (243)
c Tab										27	Co	Cobalt 58.933200	45	Rh	Rhodium 102.90550	77	Ir	Iridium 192.217	109	Mt Meimerium (266)	,	62	Sm	Samarium 150.36	94	Pu	Plutonium (244)
riodi										26	Fe	43	44	Ru	Ruthenium 101.07	76	0s	Osmium 190.23	108	HS Hassium (265)	,	61	Pm	Promethium (145)	93	dN	Neptunium (237)
he Pe										25	Mn	Manganese 54.938049	43	Лc	Technetium (98)	75	Re	Rhenium 186.207	107	Bh Bohrium (262)		09	ΡN	Neodymium 144.24	92	n	Uranium 238.0289
Th										24	Cr	Chromium 51.9961	42	Mo	Molybdenum 95.94	74	M	Tungsten 183.84	106	Seaborgium (263)		59	Pr	Praseodymium 140.90765	91	Pa	Protactinium 231.03588
										23	>	Vanadium 50.9415	41	qN	Niobium 92.90638	73	Та	Tantalum 180.9479	105	Db Dubnium (262)	,	58	Ce	Cerium 140.116	90	Τh	Thorium 232.0381
										22	Ti	Titanium 47.867	40	Zr	Zirconium 91.224	72	Ηf	Hafnium 178.49	104	Rutherfordium (261)	,						
										21	Sc	Scandium 44.955910	39	Υ	Vttrium 88.90585	57	La	Lanthanum 138.9055	68	$\mathbf{Ac}^{\text{Actinium}}_{(227)}$	2						
				4	Be	Beryllium 9.012182	12		Magnesium 24.3050	20	Ca	Calcium 40.078	38	Sr	Strontium 87.62	56		Barium 137.327	88	Radium (226)	,						
		Η	Hydrogen 1.00794	3	Li	Lithium 6.941	11	Na	Sodium 22.989770	19	K	Potassium 39.0983	37	$\mathbf{R}\mathbf{b}$	Rubidium 85.4678	55	C	Cesium 132.90545	87	$\mathbf{F}_{\mathrm{Francium}}^{\mathrm{Francium}}$, ,						

The Periodic Table

Activity 1 – What do you know already?

Complete the spider diagram below to show what you know about either Atomic Structure or the periodic table already from GCSE.

<u>Activity 2</u>

We will now focus on understanding atomic structure

Write down definitions for the following three important terms Atomic							

Relative Atomic Mass

ii)	Using what you should already know about the atom draw and label an atom in the space below that contains 2 protons, 2 neutrons and 2 electrons

iii) write a paragraph below that summaries the structure of an atom.

iv) Pick any element off the periodic table and copy the information you can see into the box below *exactly as you see it!* Clearly label all the information so you know what it all means.

v) Use this information to work out the number of protons, neutrons and electrons in one atom of your chosen element. *HINT* you will need to round the atomic mass to the nearest whole number!

Protons	
Neutrons	
Electrons	

Activity 3 – Protons, Neutrons and Electrons

You should now understand how to work out the number of protons, neutrons and electrons in one atom of any element. Use this knowledge to complete the table below

Element	Symbol	Protons	Neutrons	Electrons
Carbon				
	Mg			
		78		
	I			
Copper				

Equation writing

Writing and balancing chemical equations is a fundamental skill for all scientists.

Equations show a chemist what will form during a chemical reaction.

Equations then need to be balanced in order to remain true with the basic law that atoms cannot be created or destroyed in a reaction, they are only rearranged.

Let's attempt to balance an equation

Water is formed from the reaction of hydrogen and oxygen in the following equation: -

$$H_2 + O_2 \rightarrow H_2O$$

Without balancing this equation it appears that one oxygen atom has been lost! This cannot happen. We must always end up with the same number of atoms after a reaction. So can we just write this: -

$$H_2 + O_2 \rightarrow H_2O_2$$

NOOOOOOOO!!!!!!! You can't do this. The equation now balances but you no longer have water, you have made hydrogen peroxide!

When balancing equations it is essential that you **do not change the chemical formulae** of any reactant or product in the equation.

Let's try this again...

$$H_2 + O_2 \rightarrow H_2O$$

We know we need more oxygen on the product side. In order to do this I need to add another whole water molecule. This is what contains the extra oxygen

$$H_2 + O_2 \rightarrow H_2O$$

 H_2O

Now I have in total 4 oxygen atoms on each side and they therefore balance. But by adding in another water, I have unbalanced the hydrogen atoms. There are 2 hydrogen atoms on the left hand side and now 4 on the right. This needs to be sorted! I can't change the H_2 to H_4 so I must add another H_2 to the left hand side.

 $H_2 + O_2 \rightarrow H_2O$ $H_2 \qquad H_2O$

Finally to complete the balanced equation, I have to count how many of each molecule we have and write that number **in front** of the molecule (If there is only one, you don't need to write '1' you just leave it).

$$2H_2 + O_2 \rightarrow 2H_2O$$

It's as easy as that!!

Try and balance the following equations. They get progressively more difficult so don't panic if you can't do some of them.

1. ____NaOH + ____H_2SO_4
$$\rightarrow$$
 ____Na_2SO_4 + ____H_2O
2. ___SO_2 + ___O_2 \rightarrow ___SO_3
3. ___Ca(OH)_2 + ____HNO_3 \rightarrow ___Ca(NO_3)_2 + ____H_2O
4. ____Mg + ___O_2 \rightarrow ____MgO
5. ___Cl_2 + ___NaOH \rightarrow ___NaOCI + ___NaCI + ____H_2O
6. ___C_2H_6 + ___O_2 \rightarrow ___CO_2 + ____H_2O
7. ___C_3H_8O + ___O_2 \rightarrow ___CO_2 + ____H_2O
8. ___C_4H_8O + ___O_2 \rightarrow ___CO_2 + ____H_2O

Waves in communication

Below are ten topics that are essential foundations for you study of A-Level Physics. Each topics has example questions and links where you can find our more information as you prepare for next year.

Symbols and Prefixes

Prefix	Symbol	Power of ten
Nano	n	x 10 ⁻⁹
Micro	μ	x 10 ⁻⁶
Milli	m	x 10 ⁻³
Centi	С	x 10 ⁻²
Kilo	k	x 10 ³
Mega	М	x 10 ⁶
Giga	G	x 10 ⁹

Solve the following:

- 1. How many metres in 2.4 km?
- 2. How many joules in 8.1 MJ?
- **3.** Convert 326 GW into W.
- 4. Convert 54 600 mm into m.
- 5. How many grams in 240 kg?

- 6. Convert 0.18 nm into m.
- Convert 632 nm into m.
 Express in standard form.
- Convert 1002 mV into V.
 Express in standard form.
- **9.** How many eV in 0.511 MeV? Express in standard form.

10. How many m in 11 km?

Standard Form

At A level quantity will be written in standard form, and it is expected that your answers will be too.

This means answers should be written asx 10^y. E.g. for an answer of 1200kg we would write 1.2 x 10³kg. For more information visit: www.bbc.co.uk/education/guides/zc2hsbk/revision

- 1. Write 2530 in standard form.
- 2. Write 280 in standard form.
- 3. Write 0.77 in standard form.
- 4. Write 0.0091 in standard form.
- 5. Write 1 872 000 in standard form.
- 6. Write 12.2 in standard form.
- **7.** Write 2.4×10^2 as a normal number.
- 8. Write 3.505 x 10¹ as a normal number.
- 9. Write 8.31×10^{6} as a normal number.

10. Write 6.002×10^2 as a normal number.

Waves

You have studied different types of waves and used the wave equation to calculate speed, frequency and wavelength. You will also have studied reflection and refraction.

Use the following links to review this topic.

http://www.bbc.co.uk/education/clips/zb7gkqt https://www.khanacademy.org/science/physics/mechanical-waves-andsound/mechanical-waves/v/introduction-to-waves https://www.khanacademy.org/science/physics/mechanical-waves-and-

https://www.khanacademy.org/science/physics/mechanical-waves-andsound/mechanical-waves/v/introduction-to-waves

1. Draw a diagram showing the refraction of a wave through a rectangular glass block. Explain why the ray of light takes this path.

2. Describe the difference between a longitudinal and transverse waves and give an example of each.

3. Draw a wave and label the wavelength and amplitude