Topic F: Line graphs

This topic recaps how you can calculate key properties of straight line graphs when given two points on the line, in particular: the gradient, the length of a line segment, the midpoint of a line segment, the equation of the perpendicular bisector of a line segment, and the equation of the line. The gradient of a line is a measure of how steep it is.

Key point The gradient, *m*, of a line between two points (x_1, y_1) and (x_2, y_2) is given by $m = \frac{y_2 - y_1}{x_2 - x_1}$

Calculate the gradient of the line through the points A(1, -6) and B(-5, 2)

Find the gradient of the line through each pair of points.

Try It 1

- **a** (1,7) and (4,8) **b** (8,-2) and (4,6) **c** (-8,7) and (-4,-7)

MyMaths (

Q	1153, 1312,	1314

You also can find the length of a line segment between two points using Pythagoras' theorem.

Key point The length of the line segment, *d*, between two points (x_1, y_1) and (x_2, y_2) is $d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$

Calculate the exact distance between the point (5, 1) and (6, -4)

$$d = \sqrt{(6-5)^2 + (-4-1)^2}$$

$$= \sqrt{1^2 + (-5)^2}$$

$$= \sqrt{26}$$

 $d = \sqrt{(X_2 - X_1)^2 + (Y_2 - Y_1)^2}$ with $x_1 = 5$, $x_2 = 6$ and $y_1 = 1, \ y_2 = -4$

Leave answer as a surd since this is exact.

Calculate the exact distance between each pair of points.

a
$$(5,2)$$
 and $(7,4)$ **b** $(6,-4)$ and $(-3,-1)$ **c** $(\sqrt{2},4)$ and $(4\sqrt{2},-5)$

The midpoint of a line segment is half-way between the points at either end.

The midpoint of the line segment from (x_1, y_1) to (x_2, y_2) is $\left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right)$

Key point

The points A and B have coordinates (-4, -9) and (6, -2) respectively. Find the midpoint of AB

Midpoint =
$$\left(\frac{(-4)+6}{2}, \frac{(-9)+(-2)}{2}\right)$$

$$= \left(\frac{2}{2}, \frac{-11}{2}\right)$$

$$= (1, -5.5)$$
Use $\left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right)$
with $x_1 = -4$, $x_2 = 6$ and $y_1 = -9$, $y_2 = -2$

Calculate the mid	noint of the line	coment hetween	each pair of points.
Calculate the infu	point of the infe	Segment between	cacii paii di poiiits.

а	(1,9)	and	(2,	5)

b
$$(-2, 3)$$
 and $(-5, -7)$

b
$$(-2, 3)$$
 and $(-5, -7)$ **c** $(6.4, -9.3)$ and $(-2.6, -3.7)$

Key point

The equation of a straight line is y = mx + c where m is the gradient and *c* is the *y*-intercept.

Work out the gradient and the *y*-intercept of each of these lines.

- **a** $y = \frac{1}{2}x + 4$ **b** y + x = 5 **c** -2x + 3y + 7 = 0 **a** Gradient = $\frac{1}{2}$ and y-intercept = 4

Since y = mx + c where mis the gradient and c is the *y*-intercept.

b y = 5 - x •

So gradient = -1 and y-intercept = 5

Rearrange to make y the subject.

c 3y = -7 + 2x

$$y = -\frac{7}{3} + \frac{2}{3}x$$

So gradient = $\frac{2}{3}$ and y-intercept = $-\frac{7}{3}$

Rearrange to make y the subject.

Work out the gradient and the *y*-intercept of each line.

Try It 4

- **a** y=8-2x **b** 2y+x=3 **c** 6x-9y-4=0

You can write the gradient of a line in terms of a known point on the line (x_1, y_1) , the general point (x, y), and the gradient, m.

 $m = \frac{y - y_1}{x - x_1}$ or alternatively $y - y_1 = m(x - x_1)$

SEARCH

If you have the coordinates of two points on a line then you can find the equation of the line. First use $m = \frac{y_2 - y_1}{x_2 - x_1}$ to find the gradient of the line then substitute into $y - y_1 = m(x - x_1)$. Sometimes you will then need to rearrange the equation into a specific form.

Find the equation of the line through the points (3, 7) and (4, -2) in the form y = mx + c

Find the equation of the line through each pair of points.

а	(3,	7)	and	(2,	9)

b
$$(5,-1)$$
 and $(7,5)$ **c** $(-3,-4)$ and $(7,2)$

c
$$(-3, -4)$$
 and $(7, 2)$

Lines with the same gradient are **parallel**. For example, y = 5x + 2 is parallel to y = 5x - 7, because the gradients are the same.

The line l_1 has equation 2x+6y=5. The line l_2 is parallel to l_1 and passes through the point (1, -5). Find the equation of l_2 in the form ax + by + c = 0 where a, b and c are integers.

Try It 6 The line l_1 has equation 3x-2y=8. A second line, l_2 is parallel to l_1 and passes through the point (3, -2). Find the equation of l_2 in the form ax + by + c = 0 where a_1 b and c are integers.

Lines that meet at a right angle are **perpendicular**. The gradients of two perpendicular lines multiply to give -1. For example, a line with gradient 5 is perpendicular to a line with gradient $-\frac{1}{5}$ since $5 \times \left(-\frac{1}{5}\right) = -1$

If the gradient of a line is m then the gradient of a perpendicular line is $-\frac{1}{m}$ since $m \times \left(-\frac{1}{m}\right) = -1$

Decide whether or not each line is parallel or perpendicular to the line y = 4x - 1

a
$$2x + 8y = 5$$

b
$$20x+5y=2$$

b
$$20x+5y=2$$
 c $16x-4y=5$

Key point

First note that the gradient of y = 4x - 1 is 4

a $2x + 8y = 5 \Rightarrow 8y = 5 - 2x$

Rearrange to make y the subject.

$$\frac{5}{1}$$

$$\Rightarrow y = \frac{5}{8} - \frac{1}{4}x$$

$$4 \times \left(-\frac{1}{4}\right) = -1 \text{ so this line is perpendicular to } y = 4x - 1$$

The gradient is -

Since the product of the gradients is -1

b $20x+5y=2 \Rightarrow 5y=2-20x$

Rearrange to make y the subject.

The gradient is -4 so this line is neither parallel nor perpendicular to y = 4x - 1

c $16x - 4y = 5 \Rightarrow 4y = 16x - 5$

$$\Rightarrow y = 4x - \frac{5}{4}$$

The gradient is 4 so this line is parallel to y = 4x - 1

Decide whether or not each line is parallel or perpendicular to the line y = 4 - 3x

a
$$3x + 6y = 2$$

b
$$5x-15y=7$$

c
$$18x+6y+5=0$$

The line l_1 has equation 7x+4y=8 The line l_2 is perpendicular to l_1 and passes through the point (7, 3). Find the equation of l_2 in the form ax+by+c=0 where a, b and c are integers.

8

The **perpendicular bisector** of a line segment passes through its midpoint at a right angle.

Find the equation of the perpendicular bisector of the line segment joining (3, -4) and (9, -6)

Midpoint is $\left(\frac{3+9}{2}, \frac{-4+(-6)}{2}\right) = (6,-5)$ Gradient of line segment is $\frac{-6-(-4)}{9-3} = -\frac{2}{6} = -\frac{1}{3}$ Use $m = \frac{y_2 - y_1}{x_2 - x_1}$ So the perpendicular bisector has gradient m = 3 • The equation of the perpendicular bisector is y - (-5) = 3(x - 6)Since they are perpendicular or y = 3x - 23and $3 \times \left(-\frac{1}{3}\right) = -1$ Use $y - y_1 = m(x - x_1)$

Find the equation of the perpendicular bisector of the line segment joining (2, -3) and (-12, 5)

Try It 9

SEARCH (O

Bridging Exercise Topic F

1 Find the gradient of the line through each pair of points.

a	(3, 7)	and	(2,	8

c
$$(1.3, 4.7)$$
 and $(2.6, -3.1)$

d
$$\left(\frac{1}{2}, \frac{1}{3}\right)$$
 and $\left(\frac{3}{4}, \frac{2}{3}\right)$

e
$$(\sqrt{3}, 2)$$
 and $(2\sqrt{3}, 5)$

f
$$(3a, a)$$
 and $(a, 5a)$

2 Calculate the exact distance between each pair of points.

_	(0.4)		(1	<u>م</u> ر
a	(0,4) and	(Ι,	3)

h	(–	. 3.	9)	and	(12.	-7

d
$$\left(\frac{1}{5}, -\frac{1}{5}\right)$$
 and $\left(\frac{3}{5}, -\frac{4}{5}\right)$

	$(5, -3\sqrt{2})$ and $(2, \sqrt{2})$
f	(k, -3k) and $(2k, -6k)$
Fir	nd the coordinates of the midpoint of each pair of points.
а	(3, 9) and (1, 7)
b	(2, -4) and (-3, -9)
b	(2, -4) and (-3, -9)
b	(2, -4) and (-3, -9)
	(2, -4) and (-3, -9) (2.1, 3.5) and (6.3, -3.7)

Ч	(2)	1	and	(_	5	3
u	$(\overline{3}')$	$-\frac{1}{2}$	anu		3	$\frac{1}{2}$

_	(C / 2 / 5)	and	(/F	/F)
е	$(6\sqrt{5}, 2\sqrt{5})$	ana	$(-\sqrt{5},$	√ 5)

f
$$(m, 2n)$$
 and $(3m, -2n)$

4 Work out the gradient and the *y*-intercept of these lines.

a
$$y = 7x - 4$$

b
$$y+2x=3$$

c
$$x - y = 4$$

d	3x+2y=7	

f 5y - 3x = 0

 $\mathbf{g} \quad x + 6y + 3 = 0$

_				

h
$$3(y-2)=4(x-1)$$

5	Find the equation of t	the line through each pair of points.
	a (2, 5) and (0, 6)	
	b (1, -3) and (2, -5))
	c (4, 4) and (7, -7)	

d	(8, -2) and $(4, -3)$.			
-	(=, =, ===== (=, =)			

$$\mathbf{f} \quad (\sqrt{2}, -\sqrt{2}) \text{ and }$$

$$(3\sqrt{2},4\sqrt{2})$$

6 Which of these lines is either parallel or perpendicular to the line with equation
$$y = 6x + 5$$
?

a
$$2x+12y+3=0$$

b 18x + 3y = 2

c $3x - \frac{1}{2}y + 5 = 0$ ______

7 Which of these lines is either parallel or perpendicular to the line with equation $y = \frac{2}{3}x - 4$?

b 6x+9y+2=0

a 24x+16y+3=0

c 2x-3y=7

•	**1	non of these filles	is entier paramer or perpendicular to the fine with equation $6x + 12y - 1$:
	а	2y = 5 - x	
	b	9x = 18y + 4	
	C	10x - 5y + 3 = 0	
			your answers in the form $ax+by+c=0$ where a , b and c are integers.
9	In	e line l_1 has equat	10n y = 5x + 1
	а	Find the equation	on of the line l_2 which is parallel to l_1 and passes through (3, -3)

	b	Find the equation of the line l_2 which is perpendicular to l_1 and passes through (–4, 1)
10	The	e line l_1 has equation $y = 3 + \frac{1}{2}x$
	а	Find the equation of the line l_2 which is parallel to l_1 and passes through (-1, 5)
	b	Find the equation of the line $l_{\scriptscriptstyle 2}$ which is perpendicular to $l_{\scriptscriptstyle 1}$ and passes through (6, 2)
11	The	e line l_1 has equation $3x+y=9$
	а	Find the equation of the line l_2 which is parallel to l_1 and passes through (8, -2)

	b	Find the equation of the line l_2 which is perpendicular to l_1 and passes through $(-1,-1)$
12	The	e line l_1 has equation $6x+5y+2=0$
	а	Find the equation of the line l_2 which is parallel to l_1 and passes through (4, 0)
	b	Find the equation of the line l_2 which is perpendicular to l_1 and passes through (12, 3)

13 The line l_1 has equation 6x-2y=1

Find the equation of the line l_2 which is parallel to l_1 and passes through

b	Find the equation of the line l_2 which is perpendicular to l_1 and passes through $\left(-1, -\frac{1}{2}\right)$	

14 Find the equation of the perpendicular bisector of the line segment joining each pair of points.

b	(-5, -9) and $(5, 5)$
C	(-6, 2) and (4, 12)

((2, -7) and (-1, 2)
-	
-	
-	
_	
-	
-	
_	
((–13, –5) and (15, –12)
_ 1	the point of intersection between these pairs of lines.
J	y = 5x - 4 and $y = 3 - 2x$
_	

b	y = 8x and $y = 3x - 10$
C	$y = 7x - 5$ and $y = -\frac{1}{2}x + 5$

d	$y = \frac{1}{4}x + 7$	and $y = 5x$	ļ
			2

16 Find the point of intersection between these pairs of lines.

а	2x+3y=1	and	3x-y=7
а	2x + 3y - 1	anu	3x - y - i

b
$$3x-2y=4$$
 and $x+y=8$

C	5x-7y=3 and $2x+8y=3$
d	-8x+5y=1 and $3x+18y+7=0$