Bridging Unit: Algebra 1

Topic E: The quadratic formula

You can solve a quadratic equation using the **quadratic formula**. The quadratic formula can also be used to quickly determine how many roots a quadratic equation has.

Key point The quadratic formula for $ax^2 + bx + c = 0$ is $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$

Example 1

Inside the square root of the quadratic formula you have the expression $b^2 - 4ac$. This expression is called the **discriminant**. You can use the discriminant to determine how many roots the equation has.

© Oxford University Press 2018 Acknowledgements: www.oxfordsecondary.co.uk/acknowledgements

Given that the quadratic equation $kx^2 - x + 5 = 0$ has exactly one solution,	Try It 2
find the value of <i>k</i>	

Example 3

Given that the quadratic equation 5	$x^2 + 3x - k = 0$	has real solutions,	find the range of p	ossible
values of <i>k</i>				

a = 5, b = 3, c = -k	
$\operatorname{So} b^2 - 4ac = 5^2 - 4 \times 5 \times (-k) \bullet$	Find the discriminant.
$=25+20k$ $25+20k \ge 0 \Longrightarrow k \ge -\frac{5}{4}$	The equation has real solutions so the discriminant is greater than or equal to zero.

-		
a	a = -1, b = 7, c = 3 - k	
9	$50 b^2 - 4ac = 7^2 - 4 \times (-1) \times (3-k) \bullet$	Find the discriminant.
	=61-4k	
	$61 4 + 50 \rightarrow 10$	The equation has no
Ľ	$0 = 4k < 0 \Rightarrow k > \frac{1}{4}$	solutions so the discriminan

Given that the quadratic equation $kx^2 - 7x + 1 = 0$ has no real solutions, find the range of possible values of k	Try It 4
ByMaths Q 1160 SEARCH (P)	

© Oxford University Press 2018 Acknowledgements: www.oxfordsecondary.co.uk/acknowledgements

 (\mathscr{O})

Bridging Unit 1: Algebra 1 The quadratic formula © Oxford University Press 2018 Acknowledgements: www.oxfordsecondary.co.uk/acknowledgements

Bridging Exercise Topic E

1 Use the quadratic formula to solve each of these equations.

а	$7x^2 + 3x - 8 = 0$	
	2	
b	$-x^2+4x-2=0$	
C	$x^2 - 12x + 4 = 0$	

2 Work out how many real solutions each of these quadratic equations has.

а	$x^2 - 5x + 7 = 0$	
b	$7 - 2x - 3x^2 = 0$	
c	$4x^2 - 28x + 40 = 0$	
U	4x - 20x + 45 = 0	

3 Choose a possible equation from the box for each of the graphs.

4 Find the value of *k* in each equation given that they each have exactly one solution.

a $3x^2 + 2x - k = 0$

b $kx^2 - x + 4 = 0$

c $2x^2 + 5x + k - 5 = 0$

5 Find the range of possible values of *k* for each equation given that they all have real solutions.

a $x^2 + 3x - 3k = 0$

b $kx^2 - 7x + 4 = 0$

 $-x^2+6x-k-2=0$

6	6 Find the range of possible values of <i>k</i> for each	h equation given that the	y all have no real solutions
---	--	---------------------------	------------------------------

а	$5x^2 - x + 2k = 0$
b	$-kx^2 + 4x + 5 = 0$
C	$6x^2 - 5x + 3 - 2k = 0$