Topic E: The quadratic formula

Bridging to Ch1.4

You can solve a quadratic equation using the quadratic formula. The quadratic formula can also be used to quickly determine how many roots a quadratic equation has.

Key point

The quadratic formula for $a x^{2}+b x+c=0$ is $x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$

Solve the equation $3 x^{2}-5 x-7=0$ using the quadratic formula.

$$
\begin{array}{rl|l}
a & =3, b=-5, c=-7 & \\
x & =\frac{-(-5) \pm \sqrt{(-5)^{2}-4 \times 3 \times(-7)}}{2 \times 3} & \begin{array}{l}
\text { Substitute into the formula, } \\
\text { taking care with negatives. }
\end{array} \\
& =\frac{5 \pm \sqrt{109}}{6} \quad \begin{array}{l}
\text { Use your calculator to } \\
\text { give answer as a decimal: }
\end{array} \\
& =2.57 \text { or }-0.91(\text { to } 2 d p) & \begin{array}{l}
\frac{5+\sqrt{109}}{6}=2.57 \text { and } \\
\frac{5-\sqrt{109}}{6}=-0.91
\end{array} \\
& \begin{array}{l}
\text { You can also use the equation solver on your } \\
\text { calculator to solve quadratic equations. }
\end{array}
\end{array}
$$

Use the quadratic formula to solve the quadratic equation $7 x^{2}-4 x-6=0$
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Inside the square root of the quadratic formula you have the expression $b^{2}-4 a c$. This expression is called the discriminant. You can use the discriminant to determine how many roots the equation has.

(1) If $b^{2}-4 a c<0$ then the equation has no real roots.

Key point

2 If $b^{2}-4 a c>0$ then the equation has two real roots.
(3) If $b^{2}-4 a c=0$ then the equation has one real root.

The curve does not cross the x-axis so the discriminant is negative.

The curve crosses the x-axis twice so the discriminant is positive.
(3)

The curve touches the x-axis once so the discriminant equals zero.

Given that the quadratic equation $x^{2}+3 x+k+1=0$ has exactly one solution, find the value of k

$$
\begin{array}{rlrl}
a=1, b=3, c & =k+1 & & \\
\begin{aligned}
\text { So } b^{2}-4 a c & =3^{2}-4 \times 1 \times(k+1) & & \text { Find the discriminant. } \\
& =5-4 k & & \begin{array}{l}
\text { The equation has exactly one } \\
\text { solution so the discriminant } \\
\text { is zero. }
\end{array}
\end{aligned} & & & \\
5-4 k=0 \Rightarrow k=\frac{5}{4} & & \text { is }
\end{array}
$$

Given that the quadratic equation $k x^{2}-x+5=0$ has exactly one solution,
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Given that the quadratic equation $5 x^{2}+3 x-k=0$ has real solutions，find the range of possible values of k

```
a=5,b=3,c=-k
So b}\mp@subsup{b}{}{2}-4ac=\mp@subsup{5}{}{2}-4\times5\times(-k
    =25+20k
25+20k\geq0=>k\geq-\frac{5}{4}
    The equation has real
    solutions so the discriminant
is greater than or equal to
zero.
```

Given that the quadratic equation $x^{2}+3 x-k=0$ has real solutions，find the
range of possible values of k
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Given that the quadratic equation $-x^{2}+7 x+3-k=0$ has no real solutions，find the range of possible values of k

$$
\begin{aligned}
& a=-1, b=7, c=3-k \\
& \text { So } b^{2}-4 a c=7^{2}-4 \times(-1) \times(3-k) \\
& =61-4 k \\
& 61-4 k<0 \Rightarrow k>\frac{61}{4} \\
& \text { The equation has no } \\
& \text { solutions so the discriminant } \\
& \text { is negative. }
\end{aligned}
$$

Given that the quadratic equation $k x^{2}-7 x+1=0$ has no real solutions，find the
Try It 4 range of possible values of k
\qquad
\qquad

Bridging Exercise Topic E

1 Use the quadratic formula to solve each of these equations.
a $7 x^{2}+3 x-8=0$ \qquad
\qquad
\qquad
\qquad
\qquad
\qquad
b $-x^{2}+4 x-2=0$ \qquad
\qquad
\qquad
\qquad
\qquad
\qquad
c $x^{2}-12 x+4=0$

2 Work out how many real solutions each of these quadratic equations has.
a $x^{2}-5 x+7=0$ \qquad
\qquad
\qquad
b $\quad 7-2 x-3 x^{2}=0$ \qquad
\qquad
\qquad
c $4 x^{2}-28 x+49=0$ \qquad
\qquad
\qquad

3 Choose a possible equation from the box for each of the graphs.
a

\qquad $y=-4 x^{2}+12 x-9$
$y=-x^{2}+2 x-4$
$y=7 x^{2}-5 x+4$
$y=-x^{2}+x+6$
$y=6 x^{2}-x-15$
b

\qquad

C

\qquad
\qquad
\qquad
\qquad

Bridging Unit 1: Algebra 1 The quadratic formula
d

\qquad
\qquad
\qquad
\qquad

4 Find the value of k in each equation given that they each have exactly one solution.
a $3 x^{2}+2 x-k=0$
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
b $k x^{2}-x+4=0$
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
c $2 x^{2}+5 x+k-5=0$
\qquad
\qquad
\qquad

5 Find the range of possible values of k for each equation given that they all have real solutions.
a $\quad x^{2}+3 x-3 k=0$
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
b $\quad k x^{2}-7 x+4=0$
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
c $-x^{2}+6 x-k-2=0$

6 Find the range of possible values of k for each equation given that they all have no real solutions.
a $\quad 5 x^{2}-x+2 k=0$
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
b $-k x^{2}+4 x+5=0$
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
c $6 x^{2}-5 x+3-2 k=0$
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Bridging Unit 1: Algebra 1 The quadratic formula

