Topic C: Factorising quadratics and simple cubics

Expressions such as $5x^2 + x$, $2x^2 + 4$ and $x^2 + 2x - 1$ are called **quadratics** and can sometimes be factorised into two linear factors. There are three types of quadratics to consider:

- 1 Quadratics of the form $ax^2 + bx$ have a common factor of x so can be factorised using a single bracket and removing the highest common factor of the two terms, e.g. $6x^2 + 8x = 2x(3x + 4)$
- Quadratics of the form $x^2 + bx + c$ will sometimes factorise into two sets of brackets. You need to find two constants with a product of *c* and a sum of *b*, e.g. $x^2-3x+2=(x-2)(x-1)$ since $-2\times-1=2$ and -2+-1=-3
- Quadratics of the form ax^2-c will factorise if a and c are square numbers. This is called the difference of two squares, e.g. $4x^2-9=(2x+9)(2x-9)$

Factorise each of these quadratics.

a
$$9x^2 + 15x$$

b
$$x^2 + 3x - 10$$

c
$$x^2 - 16$$

The highest common factor of $9x^2$ and 15x is 3x

You need to find two constants with a product of **a** $9x^2 + 15x = 3x(3x + 5)$ -10 and a sum of $3:5 \times -2 = -10$ and 5 + -2 = 3so the constants are -2 and 5**b** $x^2 + 3x - 10 = (x+5)(x-2)$ •—

c
$$x^2 - 16 = (x+4)(x-4)$$

 x^2 and 16 are both square numbers.

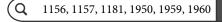
Factorise each of these quadratics.


Try It 1

a
$$14x^2 - 7x$$

b
$$x^2 - 5x + 4$$
 c $x^2 - 25$

c
$$x^2 - 25$$


When factorising quadratics of the form $ax^2 + bx + c$ with $a \ne 1$, first split the bx term into two terms where the coefficients multiply to give the same value as $a \times c$

Factorise each of these quadratics. Split 11x into 9x + 2x since $9 \times 2 = 18$ and $3\times6=18$ **a** $3x^2 + 11x + 6$ **b** $2x^2 - 9x + 10$ Factorise the first pair of terms and the second **a** $3x^2 + 11x + 6 = 3x^2 + 9x + 2x + 6$ pair of terms. =3x(x+3)+2(x+3) • =(3x+2)(x+3)Split 9x into -4x - 5x since $-4 \times -5 = 20$ and $2\times10=20$ **b** $2x^2 - 9x + 10 = 2x^2 - 4x - 5x + 10$ Factorise the first pair of terms and the second =2x(x-2)-5(x-2) • pair of terms. =(2x-5)(x-2)

Factorise each of the	hese quadratics.		Try It 2
a $5x^2 + 21x + 4$	b $6x^2 + 7x - 3$	c $8x^2 - 22x + 5$	
<u> </u>			

You can use the factors of $ax^2 + bx + c$ to find the roots of the **quadratic equation** $ax^2 + bx + c = 0$

SEARCH

Use factorisation to	find the roots	of these au	iadratic ec	mations
USE factorisation to	ima me root	s of these qu	iauranc ec	uauons.

a $4x^2 + 12x = 0$

b $5x^2 = 21x - 4$

Factorise the quadratic.

a $4x^2 + 12x = 4x(x+3)$ •

 $4x(x+3)=0 \Rightarrow 4x=0 \text{ or } x+3=0$

Solve to find the roots.

If 4x = 0 then x = 0 and if x + 3 = 0 then x = -3

Rearrange so you have a quadratic expression equal to zero.

One of the factors must be equal to zero.

b
$$5x^2 - 21x + 4 = 0$$

$$5x^{2}-21x+4=5x^{2}-20x-x+4$$

$$=5x(x-4)-(x-4)$$

Write
$$-21x = -x - 20x$$
 since $-20 \times -1 = 20$ and $5 \times 4 = 20$

$$=(5x-1)(x-4)$$

$$(5x-1)(x-4) = 0 \Rightarrow 5x-1=0 \text{ or } x-4=0$$

If
$$5x-1=0$$
 then $x = \frac{1}{5}$ and if $x-4=0$ then $x = 4$

Solve to find the roots.

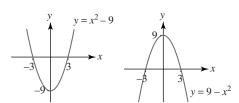
Find the roots	of these qua	dratic equations.
I III a tile i oo to	or tricoc qua	arane equations.

Try It 3

a
$$6x^2 - 12x = 0$$
 b $4x^2 = 23x - 15$

h
$$4x^2 = 23x - 15$$

MyMaths


1156, 1157, 1181, 1950, 1959, 1960

SEARCH

A quadratic function has a parabola shaped curve.

When you sketch the graph of a quadratic function you must include the coordinates of the points where the curve crosses the *x* and *y* axes.

Example 4

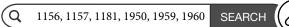
Sketch these quadratic functions. Find the y-intercept by letting **a** $v = x^2 + x - 6$ **b** $v = -x^2 + 4x$ x = 0**a** When x = 0, y = -6Find the *x*-intercept by letting When y = 0, $x^2 + x - 6 = 0$ • y = 0 $x^2 + x - 6 = (x + 3)(x - 2)$ •— Factorise to find the roots. $(x+3)(x-2)=0 \Rightarrow x=-3 \text{ or } x=2$ **b** When x = 0, y = 0Sketch the parabola and label the y-intercept of -6 and the When $y = 0, -x^2 + 4x = 0$ x-intercepts of -3 and 2 $y = -x^2 + 4x$ $-x^2 + 4x = -x(x-4)$ Sketch the parabola, it will be $-x(x-4)=0 \Rightarrow x=0 \text{ or } x=4$ this way up since the χ^2 term in the quadratic is negative. Label the x and y intercepts.

Find the *y*-intercept by letting x = 0

Find the *x*-intercept by letting y = 0

Sketch these quadratic functions.

Factorise to find the roots.


Try It 4

a
$$y = x^2 - 25$$

b $y = x^2 + 10x + 25$	5
-------------------------------	---

c
$$y = 5x - x^2$$

Bridging Exercise Topic C

1 Fully factorise each of these quadratics.

a
$$3x^2 + 5x$$

b
$$8x^2 - 4x$$

c
$$17x^2 + 34x$$

d
$$18x^2 - 24x$$

2 Factorise each of these quadratics.

a
$$x^2 + 5x + 6$$

b
$$x^2 - 7x + 10$$

$$\mathbf{c} \quad x^2 - 5x - 6$$

d
$$x^2 + 3x - 28$$

e
$$x^2 - x - 72$$

$$f x^2 + 2x - 48$$

g	$x^2 - 12x + 11$	
9	. 12	

h
$$x^2-5x-24$$

3 Factorise each of these quadratics.

a
$$x^2-100$$

b
$$x^2-81$$

c
$$4x^2-9$$

d
$$64-9x^2$$

4 Factorise each of these quadratics.

a
$$3x^2 + 7x + 2$$

b	$6x^2 + 17x + 12$		

C	$4x^2 - 13x + 3$	
•	100 100	

d
$$2x^2 - 7x - 15$$

e
$$2x^2 + 3x - 5$$

g
$$8x^2 - 22x + 15$$

h
$$12x^2 + 17x - 5$$

f $7x^2 + 25x - 12$

5 Fully factorise each of these quadratics.

а	$16x^2 - 25$	

b
$$4x^2-16x$$

$$\mathbf{c} \quad x^2 + 13x + 12$$

d
$$3x^2 + 16x - 35$$

e
$$x^2 + x - 12$$

f
$$100-9x^2$$

g
$$2x^2-14x$$

h
$$20x^2-3x-2$$

6	Use factorisation to	find the roots o	f these quadratic eq	uations.
v	Obe factoribation to	illia die iooto o	i micse quadrane ce	uuuons.

_	2 -	_
a	$21x^2 - 7x$	=0

b
$$x^2 - 36 = 0$$

c
$$17x^2 + 34x = 0$$

d
$$6x^2 + 13x + 5 = 0$$

e
$$4x^2 - 49 = 0$$

f	$x^2 = 7x + 18$	
g	$x^2 - 7x + 6 = 0$	
h	$21x^2 = 2 - x$	

	$17x = 5x^2 + 6$	
•	17x = 5x + 6	
j	$16x^2 + 24x + 9 = 0$	
k	$9x^2 + 4 = 12x$	

 $40x^2 + x = 6$

7 Sketch each of these quadratic functions, labelling where they cross the *x* and *y* axes.

a
$$y = x(x-3)$$

b
$$y = -x(3x+2)$$

c
$$y = x(3-x)$$

d
$$y = (x+2)(x-2)$$

e
$$y = (x+4)^2$$

f
$$y = -(2x+5)^2$$

$$y = (x-5)(x+2)$$

h
$$y = (x+1)(5-x)$$

8 Sketch each of these quadratic functions, labelling where they cross the *x* and *y* axes.

a
$$y = x^2 + 6x$$

b
$$y = 3x^2 - 12x$$

c
$$y = x^2 - 121$$

d
$$y = x^2 - 3x - 10$$

e
$$y = -x^2 + 3x$$

f
$$y = 15x - 10x^2$$

g
$$y = 49 - x^2$$

h
$$y = -x^2 + 2x + 3$$

i
$$y = x^2 - 4x + 4$$

$$\mathbf{j} \qquad y = -x^2 + 14x - 49$$

k
$$y = 3x^2 + 4x + 1$$

$$y = -2x^2 + 11x - 12$$