Topic B: Solving linear equations and rearranging formulae

to Ch1. 4

This topic recaps the balance method to solve problems involving linear equations, and both the elimination and substitution methods to solve linear simultaneous equations. You can solve linear equations and inequalities using the balance method where the same operation is applied to both sides.

Solve the equation $3 x+8=5 x-6$
Try It 1
\qquad
\qquad
\qquad
\qquad

Solve the inequality $5(x-2) \leq 2 x+1$
First expand the brackets.
$5 x-10 \leq 2 x+1$
$3 x-10 \leq 1$.

(8) MyMaths
\qquad
\qquad
\qquad
\qquad

When solving inequalities, remember that multiplying or dividing by a negative number will reverse the inequality sign. For example, $5>3$ but $-5<-3$
Equations and formulae can be rearranged using the same method as for solving equations.

Rearrange $A x-3=\frac{x+B}{2}$ to make x the subject.

Rearrange $3(x+A)=B x+1$ to make x the subject.
\qquad
\qquad
\qquad
\qquad
\qquad

You can solve linear simultaneous equations using the elimination method, as shown in Example 4. The solutions to simultaneous equations give the point of intersection between the lines represented by the two equations.

Solve the simultaneous equations $5 x-4 y=17,3 x+8 y=5$

Solve the simultaneous equations $2 x+5 y=1,3 x-2 y=-27$
Try It 4
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad L

The example shows you that the lines $5 x-4 y=17$ and
$3 x+8 y=5$ intersect at the point $\left(3,-\frac{1}{2}\right)$
If you are given the equation of two lines where y is the subject then the easiest way to solve these simultaneously is to use the substitution method as shown in the next example.

Find the point of intersection between the lines with equations $y=2 x+5$ and $y=7-3 x$

Find the point of intersection between the lines $y=3 x+4$ and $y=6 x-2$
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

(88) MyMaths

Bridging Exercise Topic B

1 Solve each of these linear equations.
a $\quad 3(2 x+9)=7$ \qquad
\qquad
\qquad
\qquad
b $7-3 x=12$ \qquad
\qquad
\qquad
\qquad
c $\frac{x+4}{5}=7$ \qquad
\qquad
\qquad
\qquad
d $2 x+7=5 x-6$ \qquad
\qquad
\qquad
\qquad
e $\quad 8 x-3=2(3 x+1)$ \qquad
\qquad
\qquad
\qquad
\qquad
Bridging Unit 1: Algebra 1 Solving linear equations and rearranging formulae
f $\frac{2 x+9}{12}=x-1$
g $2(3 x-7)=4 x$
\qquad
\qquad
\qquad
\qquad
h $\quad 7-2 x=3(4-5 x)$ \qquad
\qquad
\qquad
\qquad
\qquad

2 Solve each of these linear inequalities.
a $\frac{x}{2}+7 \geq 5$ \qquad
\qquad
\qquad
\qquad
b $3-4 x<15$
c $5(x-1)>12+x$
d $\frac{x+1}{3}>2$ \qquad
\qquad
\qquad
\qquad
e $\quad 8 x-1 \leq 2 x-5$ \qquad
\qquad
\qquad
\qquad
\qquad
f $\quad 3(x+1) \geq \frac{x-3}{2}$ \qquad
\qquad
\qquad
\qquad
\qquad
g $3(2 x-5)<1-x$
h $\quad x-(3+2 x) \geq 2(x+1)$
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

3 Rearrange each of these formulae to make x the subject.
a $2 x+5=3 A-1$ \qquad
\qquad
\qquad
\qquad
\qquad
b $x+u=v x+3$ \qquad
\qquad
\qquad
\qquad
\qquad
c $\frac{3 x-1}{k}=2 x$ \qquad
\qquad
\qquad
d $\quad 5(x-3 m)=2 n x-4$ \qquad
\qquad
\qquad
\qquad
e $\quad(1-3 x)^{2}=t$ \qquad
\qquad
\qquad
\qquad
\qquad
f $\frac{1}{x}=\frac{1}{p}+\frac{1}{q}$ \qquad
\qquad
\qquad
\qquad
\qquad
g $\frac{1}{x^{2}+k}-6=4$ \qquad
\qquad
\qquad
\qquad
\qquad

Bridging Unit 1: Algebra 1 Solving linear equations and rearranging formulae
h $\sqrt{x+A}=2 B$ \qquad
\qquad
\qquad
\qquad
\qquad

4 Use algebra to solve each of these pairs of simultaneous equations.
a $5 x+12 y=-6, x+5 y=4$
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
b $7 x+5 y=14,3 x+4 y=19$
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

C $2 x-5 y=4,3 x-8 y=5$
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
d $3 x-2 y=2, \quad 8 x+3 y=4.5$
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
e $\quad 5 x-2 y=11,-2 x+3 y=22$
f $8 x+5 y=-0.5,-6 x+4 y=-3.5$
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

5 Use algebra to find the point of intersection between each pair of lines.
a $y=8-3 x, y=2-5 x$
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
b $\quad y=7 x-4, y=3 x-2$
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
c $y=2 x+3, y=5-x$
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
d $y+5=3 x, y=-5 x+7$
e $y=\frac{1}{2} x+3, y=5-2 x$
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
f $y=3(x+2), y=7-2 x$

