Topic D: Completing the square

Some quadratics are **perfect squares** such as $x^2 - 8x + 16$ which can be written $(x-4)^2$. For other quadratics you can **complete the square**. This means write the quadratic in the form $(x+q)^2+r$

The completed square form of $x^2 + bx + c$ is $\left(x + \frac{b}{2}\right)^2 - \left(\frac{b}{2}\right)^2 + c$

Key point

If you have an expression of the form $ax^2 + bx + c$ then first factor out the a, as shown in Example 1

Write each of these quadratics in the form $p(x+q)^2 + r$ where p, q and r are constants to be found.

a
$$x^2 + 6x + 7$$

a
$$x^2 + 6x + 7$$
 b $-2x^2 + 12x$

a
$$x^2 + 6x + 7 = \left(x + \frac{6}{2}\right)^2 - \left(\frac{6}{2}\right)^2 + 7$$

= $(x+3)^2 - 9 + 7$
= $(x+3)^2 - 2$
b $-2x^2 + 12x = -2\left[x^2 - 6x\right]$

The constant term in the bracket will be half of the coefficient of x

First factor out the coefficient of x^2 then complete the square for the expression in the square brackets.

Write each of these quadratics in the form $p(x+q)^2 + r$

Try It 🚹

a
$$r^2 + 22 r$$

a
$$x^2 + 22x$$
 b $2x^2 - 8x - 6$ **c** $-x^2 + 10x$

 $=-2[(x-3)^2-9]$

 $=-2(x-3)^2+18$

c
$$-x^2 + 10x$$

Key point The turning point on the curve with equation $y = p(x+q)^2 + r$ has coordinates (-q, r), this will be a minimum if *p* is positive and a maximum if *p* is negative.

Find the coordinates of the turning point of the curve with equation $y = -x^2 + 5x - 2$

$$-x^{2} + 5x - 2 = -\left[x^{2} - 5x + 2\right]$$

$$= -\left[\left(x - \frac{5}{2}\right)^{2} - \frac{25}{4} + 2\right]$$

$$= -\left[\left(x - \frac{5}{2}\right)^{2} - \frac{17}{4}\right]$$

$$= -\left(x - \frac{5}{2}\right)^{2} + \frac{17}{4}$$
So the maximum point is at $\left(\frac{5}{2}, \frac{17}{4}\right)$

First factor out the -1 then complete the square for the expression in the square brackets.

The curve is at its highest point when the bracket is equal to zero: $x - \frac{5}{2} = 0 \Rightarrow x = \frac{5}{2}$

Find the coordinates of the turning point of each of these curves and state whether they are a maximum or a minimum.

Try It 2

a
$$y = x^2 - 3x + 1$$

b
$$y = -x^2 - 7x - 12$$
 c $y = 2x^2 + 4x - 1$

c
$$v = 2x^2 + 4x - 1$$

Bridging Exercise Topic D

1 Write each of these quadratic expressions in the form $p(x+q)^2 + r$

а	$x^2 + 8x$	
_		

b
$$x^2 - 18x$$

$$\mathbf{c} \quad x^2 + 6x + 3$$

d
$$x^2 + 12x - 5$$

e
$$x^2 - 7x + 10$$

$$f x^2 + 5x + 9$$

$$\mathbf{g} = 2x^2 + 8x + 4$$

h	$3x^2 + 18x - 6$	
	2	
İ	$2x^2-10x+3$	
j	$-x^2 + 12x - 1$	
k	$-r^2 + 9r - 3$	
K	x 13x 3	
_	2	
I	$-2x^2+5x-1$	

2 Use completing the square to find the turning point of each of these curves and state whether it is a maximum or a minimum.

	2
а	$y = x^2 + 14x$

b	$v = x^2 - 18x + 3$	
	<i>y</i> 2011.0	

c
$$y = x^2 - 9x$$

d
$$y = -x^2 + 4x$$

e
$$y = x^2 + 11x + 30$$

f	$y = -x^2 + 6x - 7$	
	<i>y</i>	

q	$y = 2x^2 + 16x - 5$	

h	$y = -3x^2 + 15x - 2$	

